Introduction to Radiology

Course Overview

• Four Live Lectures
• Four Required On-line modules
• Lab session
• Four quizzes
• Two examinations
Course Overview

• Expectations
 – Active participation and preparation
 – Utilization of provided on-line materials
 – Exciting Fun Course

Introduction Lecture

• Historical overview
• X-rays
• Appropriateness Criteria
• Application of the various technologies to be discussed in the course
Ionizing Radiation Historical Overview

• Wilhelm Conrad Röentgen
 – 1845 – 1923
 – November 8, 1895 – discovery of the x-ray
 • Discovered effect of passing this ray through materials
 • First radiograph of his wife’s hand
 – 1901 – Nobel Prize Physics

• Antoine Henri Becquerel
 – 1852-1908
 – Radioactive nature of Uranium
 – 1903 – Nobel Prize Physics

Ionizing Radiation Historical Overview

• Marie and Pierre Curie
 – 1867-1934, 1859 – 1906
 – Marie coined term “radioactivity”
 – Discovery of Polonium and Radium
 – 1903 - 1910 – Nobel Prize Physics - Chemistry
 – Died July 4, 1934 – Pernicious Anemia

• William D. Coolidge
 – Patent holder for the original x-ray tube 1913

• Robert S. Ledley
 – Patent holder for original CT scanner 1975
US Historical Overview

- George D. Ludwig
 - Late 1940’s research for the Navy
 - Classified work using US to evaluate tissues
 - Report June 1949 first published work on US applications
- Douglass Howry, Joseph Holmes
 - Pioneering work in B-Mode ultrasound
- Joseph Holmes, William Wright and Ralph Meyerdirk
 - First articulated arm scanner 1963
- James Griffith, Walter Henry NIH
 - Mechanical oscillating real-time apparatus 1973
- Martin H. Wilcox
 - Linear array real time scanner 1973

NM Historical Overview

- Benedict Cassen, Lawrence Curtis, Clifton Reed
 - Automated scintillation detector 1951
- Hal Anger
 - Scintillation Camera 1958
- Picker Corporation
 - 3 inch rectilinear scanner 1959
- John Kuranz – Nuclear Chicago
 - First commercial Anger (Gamma Camera)
MRI Historical Overview

- Felix Bloch, Edward Purcell
 - NMR Spectroscopy
- Paul Laterbur, Peter Mansfield
 - 2003 Nobel Prize Physiology / Medicine
- Raymond Damadian
 - First patent in field of MRI 1970

Imaging Modalities

- Ionizing Radiation:
 - Diagnostic Radiology (X-rays)
 - Interventional Radiology
 - Computed Tomography (CT)
 - Nuclear Medicine
 - Positron Emission Tomography (PET)
- No Ionizing Radiation:
 - Diagnostic Ultrasound (Ultrasonography)
 - Magnetic Resonance Imaging (MRI)
X-Rays

- High energy electromagnetic radiation
- Behaves both like a particle (photon) and a wave
- Production of X-Rays
 - Free electrons produced at filament of x-ray tube (cathode)
 - High Speed movement of electrons
 - Rapid deceleration of electrons at anode
 - Emission of a x-ray photon

X-ray Tube Schematic

[Diagram of x-ray tube with labeled parts: Envelope, Anode – Tungsten Target, Electron Beam, Cathode, Window, Collimator, X-rays]
Production of Image

- X-ray pass through tissue to expose detector
- Passage depends on
 - Tissue characteristics
 - Density
 - Atomic Number
 - Number of electrons per gram
 - Thickness

Production of Image

- Differential absorption of X-ray as the beam passes through the patient
- Unabsorbed X-rays expose the detector (i.e. film, CR Plate, solid state detector), creating the image (photographic effect)
- Differential absorption of X-ray by the tissues is the cardinal feature of image formation
- Special terms used on x-ray reports
 - Radiopaque, Radiolucent, High attenuation, Low attenuation, Water density
Standard X-Ray Machine

Fluoroscopic Imaging Unit
Natural Densities

- Natural densities in the body
 - Bone
 - Soft tissue and body fluid
 - Fat
 - Lung and air containing organs

- Appearance on the radiographic image
 - White shades of Gray
 - Black

Image Density X-ray

- Radiopaque – High attenuation
 - Appears white on film – black on fluoroscopy
 - X-ray photons don’t reach the detector

- Radiolucent – Low attenuation
 - Appears black on film – white on fluoroscopy
 - X-ray photons unimpeded traveling to detector

- Water density
 - Appears grey on film
 - All soft tissues
Natural Contrast

- Differential contrast between bone and soft tissues
- Differential contrast between soft tissues and air
- Little difference between various tissue types i.e. fat, muscle, solid organs, blood….

Natural Contrast

- Pathologic processes may cause differences in natural densities that can be visualized on the X-ray;
 - high density tumor in air filled lung- white
 - Low density cyst in radio-opaque bone- black
- Pathologic processes of almost the same density as adjoining structures are not visible on X-ray.
- May need to use additional artificial contrast to visualize a density difference
Contrast Agents

• Contrast material (radio-opaque or radio-lucent) administered to see structures or pathologic processes that would not be seen otherwise
• Some useful contrast agents
 – Barium sulfate in the GI tract
 – Iodine compounds in the vessels
 – Carbon dioxide in the vessels or GI tract
 – Naturally occurring air in the GI tract

Fluoroscopic Room

- Video Camera
- Radiosensitive Screen
Appropriateness Criteria

- Guidelines to assure proper imaging choices
- Based on attributes developed by the Agency for Healthcare Research and Quality (AHRQ)

Appropriateness Criteria

- Validity – lead to better outcomes based on scientific evidence
- Reliable and reproducible – other experts should develop same recommendations based on the same scientific evidence
- Clinical applicability – guideline indicates target population
Appropriateness Criteria

– Clinical flexibility – specify expectations
– Clarity – unambiguous, clear definitions
– Multidisciplinary – all affected groups should be represented
– Scheduled review – fixed time to review and revise
– Documentation – evidence used and approach taken is documented

ACR Appropriateness Review Criteria Overview

Appropriateness Criteria

• ACR Appropriateness Criteria search engine:
 • http://www.acr.org/SecondaryMainMenuCategories/quality_safety/app_criteria.aspx
• Allows searching by 10 diagnostic imaging expert panels
• Useful resource when evaluating what clinical exam may be useful
Appropriateness Criteria

• Electronic Decision Support for Medical Imaging
• Future opportunities to improve health care

X-Ray

• Ionizing radiation
 – Exposure concerns
• Somewhat limited discrimination between structures of similar density
 – Tumor vs. normal organs
• Inexpensive
• Readily available
• First line imaging tool
X-Ray

- Primary applications:
 - Chest Imaging
 - Infiltrates
 - Masses
 - Cardiac silhouette
 - Abdominal imaging
 - Gas/bowel distribution
 - Free air
 - Calcifications
 - Organomegaly/masses

X-Ray

- Primary Applications
 - Bone and Joint imaging
 - Trauma
 - Neoplasm
 - Soft Tissues
 - Mass
 - Foreign bodies
 - Breast imaging
X-Ray

• Secondary applications:
 – Contrast enhanced examination
 • Urinary tract
 – IVU
 – Cystography, urethrography
 – Angiography
 • Pulmonary/Cardiac
 – Pulmonary
 – Coronary
 – Great vessels
 • General
 – Neoplasm
 – Vascular abnormalities

X-Ray

• Secondary applications:
 – Dual energy
 • Lung lesions
 • Soft tissue calcifications
 – Bone density evaluation
 – Tomography – tomosynthesis
Interventional Radiology

- Minimally invasive technology
 - Biopsy
 - Cavity drainage
 - Infections
 - Neoplasm
 - Revascularization
 - TPA
 - Angioplasty
 - Stenting

Interventional Radiology

- Lumen restoration / drainage
 - Biliary tree
 - Ureters
 - Others
- Vertebroplasty/ kyphoplasty
Computed Tomography

- Ionizing radiation
 - Requires concern and careful utilization
- Excellent discrimination between subtle tissue density differences
- Moderately expensive
- Readily available
- Growing spectrum of applications across a broad spectrum of diseases and body parts

Computed Tomography

- Primary applications:
 - First line evaluation in suspected cerebral vascular events – hemorrhagic vs. ischemic
 - First line evaluation in soft-tissue and skeletal trauma
 - First line evaluation in suspected pulmonary embolism
 - First line evaluation in suspected urinary calculi
Computed Tomography

• Primary applications:
 – Head & Neck
 • CVA evaluation
 • Carotid and intra-cerebral vascular evaluation
 • Head-neck trauma – evaluation for subdural and epidural hematoma – evaluation for cervical fracture
 • Neoplasm staging
 – Thorax
 • Lung- mediastinum nodule/ mass evaluation,
 • Cardiac, coronary, pulmonary and great vessel vascular evaluation
 • Airway evaluation
 • Neoplasm staging

Computed Tomography

• Primary applications:
 – Abdomen/ Pelvis
 • Solid organ evaluation
 • Urinary tract evaluation for calcification
 • CT angiography
 • CT colonography
 • CT urography
 • Lumbar spine evaluation (pacemakers, stimulators)
 • Neoplasm Staging
Computed Tomography

- Primary applications:
 - Bones & Joints
 - 3-D joint reconstructed images
 - Evaluation of fracture union
 - Evaluation of neoplasm / extent
- Secondary applications:
 - Evaluation of patients with a contraindication to MRI imaging
 - Bone mineral density analysis

Nuclear Medicine / PET

- Ionizing radiation
- Radio-isotopes attached to molecules targeting specific organs or metabolic processes
- Spatial resolution limited
- Able to evaluate temporal resolution of uptake/ events
Nuclear Medicine / PET

• Primary applications:
 – First line evaluation of biliary function evaluation
 – First line evaluation of cardiac perfusion
 – First line evaluation of solid pulmonary nodules
 – First line evaluation for many neoplasms, staging – treatment response

Nuclear Medicine / PET

• Primary applications:
 – Head & Neck
 • Brain death evaluation – cerebral blood flow
 • CSF flow evaluation
 • Bone abnormality evaluation
 – Thorax
 • V-Q Scanning – Ventilation Perfusion scanning for Pulmonary Embolism detection – secondary exam
 • Pulmonary nodule evaluation (PET)
 • Cancer staging (PET)
Nuclear Medicine / PET

- Primary applications:
 - Abdomen & Pelvis
 - Liver – spleen scanning
 - Hepatobiliary scanning
 - Renal scanning
 - Bladder & Reflux evaluation
 - GI bleed evaluation
 - Cancer staging (PET)
 - Soft tissues – Bone & Joints
 - Bone scanning
 - Tumor scanning (Gallium, PET)
 - Infection scanning (labeled white cells, Gallium)

Magnetic Resonance Imaging

- No ionizing radiation
- Utilize magnetic fields and radio waves
- Contraindication: implanted devices, ferro-magnetic metals
- Relative contraindication: claustrophobia
- Differentiation of distribution of Hydrogen ions as impacted by adjoining molecules
- Ability to do spectral analysis (remember organic chemistry)
Magnetic Resonance Imaging

- Primary applications:
 - First line evaluation of suspected neurologic abnormality
 - First line evaluation of soft tissue mass/neoplasm
 - First line evaluation of joint disarrangements
 - First line evaluation of bone neoplasm

Magnetic Resonance Imaging

- Primary applications:
 - Head
 - Neoplasm
 - Infection
 - CVA
 - Developmental anomalies
 - Trauma
 - MR angiography
 - Neck
 - Effect of arthritis and degenerative changes
 - Neoplasm
 - Trauma
 - MR Angiography
Magnetic Resonance Imaging

- Primary applications:
 - Thorax
 - Spine – cord, roots, bodies
 - Heart – function, perfusion
 - MR angiography
 - Abdomen
 - Liver – mass, iron content, biliary tree
 - MR Cholangiography
 - Kidneys
 - MR Urography
 - MR Colonography
 - Retroperitoneum

Magnetic Resonance Imaging

- Primary applications:
 - Pelvis
 - Prostate
 - Neoplasm
 - Hypertrophy
 - CAD
 - Uterus & Ovaries
 - Masses
 - Leiomyoma
 - Spine
 - Cord
 - Roots
 - Foramina
 - Stenosis
 - Arthritis
Magnetic Resonance Imaging

• Primary applications:
 – Bones & Joints
 • Tendons and ligaments injury
 • Articular cartilage evaluation
 • Muscle abnormality
 • Trauma – fracture, contusion
 • Mass/ Neoplasm – appearance and extent
 – Soft tissues
 • Mass/ Neoplasm
 • MR angiography

Ultrasound

• No ionizing radiation
• Principles of fairly uniform speed of sound transmission in human tissues
• Ability to differentiate fairly subtle tissue differences based on echo reflection and interactions
• Application of Doppler principles for fluid motion
Ultrasound

• Primary applications:
 – First line evaluation of pregnancy and developing fetus
 – First line evaluation for differentiation of cystic from solid masses/structures
 – First line evaluation of liver and biliary tree
 – First line evaluation of kidneys and bladder
 – First line evaluation of thyroid gland

Ultrasound

• Primary applications:
 – Head & Neck
 • Thyroid
 • Adenopathy
 • Orbits & globe
 • Salivary glands
 • Fetal brain
 • Soft tissue masses
 – Thorax
 • Cardiac
 • Pleural effusions
 • Breast lesions
 • Soft tissue masses
Ultrasound

• Primary applications:
 – Abdomen
 • Liver
 • Pancreas
 • Spleen
 • Kidneys
 • Aorta
 • Splanchnic and renal vessels

• Primary applications:
 – Pelvis
 • Pregnant uterus and fetus
 • Uterus
 • Fallopian tubes
 • Ovaries
 • Bladder
 • Prostate
 • Testes and scrotum
Ultrasound

• Primary applications:
 – Soft tissues, bones & joints
 • Tendons, Ligaments and supporting structures
 • Fluid collections and masses
 • Vascular malformations
 • Artery and vein evaluation
 • Foreign bodies